304 research outputs found

    A diode device combining lateral field-effect transport and vertical tunneling in a multi-quantum-well heterostructure

    Get PDF
    The authors discuss an electronic device with asymmetric contacts to a InGaAs-InP multilayer heterostructure. Current enters via an alloyed ohmic contact into the quantum wells (QWs) and flows laterally along capacitively coupled channels. It leaves via tunneling between the layers and through a forward-biased surface Schottky contact. A step-like I-V dependence is observed and interpreted by a model calculation

    Characterisation of Hybrid Pixel Detectors with capacitive charge division

    Get PDF
    In order to fully exploit the physics potential of the future high energy e+ e- linear collider, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells between the readout nodes has been developed to improve the single point resolution. The results of the characterisation of the first processed prototypes are reported.Comment: 5 pages, 2 figures, presented at LCWS2000, Linear Collider Workshop, October 24-28 2000, Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A. Proceedings to be published by the American Institute of Physic

    A Pixel Vertex Tracker for the TESLA Detector

    Get PDF
    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presentedComment: 20 pages, 11 figure

    High resolution pixel detectors for e+e- linear colliders

    Get PDF
    The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hybrid Pixel Sensors already used in high energy physics experiments and a new detector concept based on the monolithic CMOS sensors.Comment: 8 pages, to appear on the Proceedings of the International Workshop on Linear Colliders LCWS99, Sitges (Spain), April 28 - May 5, 199

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199
    corecore